Deep Learning (DL) models tend to perform poorly when the data comes from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection helps to identify such data samples, increasing the model's reliability. Recent works have developed DL-based OOD detection that achieves promising results on 2D medical images. However, scaling most of these approaches on 3D images is computationally intractable. Furthermore, the current 3D solutions struggle to achieve acceptable results in detecting even synthetic OOD samples. Such limited performance might indicate that DL often inefficiently embeds large volumetric images. We argue that using the intensity histogram of the original CT or MRI scan as embedding is descriptive enough to run OOD detection. Therefore, we propose a histogram-based method that requires no DL and achieves almost perfect results in this domain. Our proposal is supported two-fold. We evaluate the performance on the publicly available datasets, where our method scores 1.0 AUROC in most setups. And we score second in the Medical Out-of-Distribution challenge without fine-tuning and exploiting task-specific knowledge. Carefully discussing the limitations, we conclude that our method solves the sample-level OOD detection on 3D medical images in the current setting.
翻译:深度学习(DL) 模型在数据分布与培训的不同时往往表现不佳。 在医疗成像、分配外检测(OOOD)等关键应用中, 有助于识别这些数据样本, 提高模型的可靠性。 最近的工作开发了基于DL的 OOD 检测,在 2D 的医疗图像上取得了可喜的成果。 然而, 将大多数这些方法推广到 3D 图像上是难以计算的结果。 此外, 目前3D 解决方案在检测甚至合成 OOOD 样本时都难以取得可接受的结果。 这种有限的性能可能表明 DL 往往低效地嵌入大型的体积图像。 我们认为, 使用原CT 或 MRI 扫描的强度直方图作为嵌入式足以描述 OOD 检测。 因此, 我们提出了基于直方图的检测方法, 不需要 DL, 并且在该领域取得几乎完美的结果。 我们的提案得到了双重支持。 我们评估了公开数据集的性工作表现, 我们的方法在大多数设置中都得1.0 AUROC 。 我们在医疗外扩散图像定位中排名第二。 我们在医学上, 我们没有细微地讨论当前检测方法 3 。