Participation incentives a well-known issue inhibiting randomized clinical trials (RCTs). We frame this issue as a non-standard exploration-exploitation tradeoff: an RCT would like to explore as uniformly as possible, whereas each patient prefers "exploitation", i.e., treatments that seem best. We incentivize participation by leveraging information asymmetry between the trial and the patients. We measure statistical performance via worst-case estimation error under adversarially generated outcomes, a standard objective for RCTs. We obtain a near-optimal solution in terms of this objective: an incentive-compatible mechanism with a particular guarantee, and a nearly matching impossibility result for any incentive-compatible mechanism. We consider three model variants: homogeneous patients (of the same "type" comprising preferences and medical histories), heterogeneous agents, and an extension with estimated type frequencies.
翻译:暂无翻译