Point cloud processing is a challenging task due to its sparsity and irregularity. Prior works introduce delicate designs on either local feature aggregator or global geometric architecture, but few combine both advantages. We propose Dual-Scale Point Cloud Recognition with High-frequency Fusion (DSPoint) to extract local-global features by concurrently operating on voxels and points. We reverse the conventional design of applying convolution on voxels and attention to points. Specifically, we disentangle point features through channel dimension for dual-scale processing: one by point-wise convolution for fine-grained geometry parsing, the other by voxel-wise global attention for long-range structural exploration. We design a co-attention fusion module for feature alignment to blend local-global modalities, which conducts inter-scale cross-modality interaction by communicating high-frequency coordinates information. Experiments and ablations on widely-adopted ModelNet40, ShapeNet, and S3DIS demonstrate the state-of-the-art performance of our DSPoint.
翻译:点云处理是一项具有挑战性的任务,因为它的广度和不规则性。 先前的工程引入了对本地地物聚合器或全球几何结构的微妙设计,但很少将两者兼而有之。 我们提议使用高频聚变(DSPoint)来同时在氧化物和点上操作,以提取本地-全球地物。 我们颠倒了对氧化物和点注意力进行融合的传统设计。 具体地说,我们通过双级处理的频道维度将点点分解开来:一个通过点对精细测的几何对称进行点切合,另一个通过对长程结构探索进行富氧全球的注意。 我们设计了一个共同注意聚变模块,将地物与地方-全球模式相结合,通过传送高频坐标信息进行跨式的跨模式互动。 广泛采用的模型Net40、 ShapeNet 和 S3DIS 的实验和汇总展示了我们DSPPPO的最新表现。