Deformable image registration is a crucial step in medical image analysis for finding a non-linear spatial transformation between a pair of fixed and moving images. Deep registration methods based on Convolutional Neural Networks (CNNs) have been widely used as they can perform image registration in a fast and end-to-end manner. However, these methods usually have limited performance for image pairs with large deformations. Recently, iterative deep registration methods have been used to alleviate this limitation, where the transformations are iteratively learned in a coarse-to-fine manner. However, iterative methods inevitably prolong the registration runtime, and tend to learn separate image features for each iteration, which hinders the features from being leveraged to facilitate the registration at later iterations. In this study, we propose a Non-Iterative Coarse-to-finE registration Network (NICE-Net) for deformable image registration. In the NICE-Net, we propose: (i) a Single-pass Deep Cumulative Learning (SDCL) decoder that can cumulatively learn coarse-to-fine transformations within a single pass (iteration) of the network, and (ii) a Selectively-propagated Feature Learning (SFL) encoder that can learn common image features for the whole coarse-to-fine registration process and selectively propagate the features as needed. Extensive experiments on six public datasets of 3D brain Magnetic Resonance Imaging (MRI) show that our proposed NICE-Net can outperform state-of-the-art iterative deep registration methods while only requiring similar runtime to non-iterative methods.
翻译:变形图像登记是医疗图像分析中发现一对固定图像和移动图像之间非线性空间转换的关键一步。 基于进化神经网络(CNNs)的深层登记方法已被广泛使用,因为它们可以快速和端到端进行图像登记。 但是,这些方法通常对图像配配有大变形的图像的性能有限。 最近,迭代的深层登记方法被用于缓解这一限制,在这些限制中,变异以粗到底的方式反复学习。然而,迭代方法不可避免地延长了登记运行时间,并倾向于为每迭代学习不同的图像特征,这阻碍了这些特性被利用来便利以后的迭代的图像登记。在本研究中,我们建议采用非动态的变形至精密图像登记网络(NICE-Net)的性能。在 NICE-Net中,我们建议:(一) 单层深层积累学习(SDCL) 解析方法,可以累积在单层内进行非线性变异的图像转换,而需要一个普通的不断变异的内, 升级的系统化的系统化的系统化系统化系统,可以显示一个普通的升级的系统, 升级的系统化的系统,可以显示整个系统化的系统化的系统化的系统化的系统化系统化的系统化系统化的系统化的系统化的系统化系统化系统化的系统化的系统化系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化系统化系统化系统化系统化系统化系统化系统化系统化的系统化的系统化的系统化的系统化系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统化的系统图。