Determining capacities of quantum channels is a fundamental question in quantum information theory. Despite having rigorous coding theorems quantifying the flow of information across quantum channels, their capacities are poorly understood due to super-additivity effects. Studying these phenomena is important for deepening our understanding of quantum information, yet simple and clean examples of super-additive channels are scarce. Here we study a family of channels called platypus channels. Its simplest member, a qutrit channel, is shown to display super-additivity of coherent information when used jointly with a variety of qubit channels. Higher-dimensional family members display super-additivity of quantum capacity together with an erasure channel. Subject to the "spin-alignment conjecture" introduced in the companion paper [IEEE Trans. Inf. Theory 69(6), pp. 3825-3849, 2023; arXiv:2202.08380], our results on super-additivity of quantum capacity extend to lower-dimensional channels as well as larger parameter ranges. In particular, super-additivity occurs between two weakly additive channels each with large capacity on their own, in stark contrast to previous results. Remarkably, a single, novel transmission strategy achieves super-additivity in all examples. Our results show that super-additivity is much more prevalent than previously thought. It can occur across a wide variety of channels, even when both participating channels have large quantum capacity.
翻译:暂无翻译