Multivariate time series forecasting is a challenging task because the data involves a mixture of long- and short-term patterns, with dynamic spatio-temporal dependencies among variables. Existing graph neural networks (GNN) typically model multivariate relationships with a pre-defined spatial graph or learned fixed adjacency graph. It limits the application of GNN and fails to handle the above challenges. In this paper, we propose a novel framework, namely static- and dynamic-graph learning-neural network (SDGL). The model acquires static and dynamic graph matrices from data to model long- and short-term patterns respectively. Static matric is developed to capture the fixed long-term association pattern via node embeddings, and we leverage graph regularity for controlling the quality of the learned static graph. To capture dynamic dependencies among variables, we propose dynamic graphs learning method to generate time-varying matrices based on changing node features and static node embeddings. And in the method, we integrate the learned static graph information as inductive bias to construct dynamic graphs and local spatio-temporal patterns better. Extensive experiments are conducted on two traffic datasets with extra structural information and four time series datasets, which show that our approach achieves state-of-the-art performance on almost all datasets. If the paper is accepted, I will open the source code on github.


翻译:多变量时间序列预测是一项具有挑战性的任务,因为数据涉及长期和短期模式的混合,各变量之间具有动态的时空依赖性。现有的图形神经网络(GNN)通常与预定义的空间图形或学习的固定相邻图形建模多变量关系。它限制了GNN的应用,未能应对上述挑战。在本文件中,我们提议了一个新颖的框架,即静态和动态的学习-内向网络(SDGL)。模型分别从数据获取静态和动态的图形矩阵,到模型的长期和短期模式。 Static Matrical是用来通过节心嵌式嵌入来捕捉固定的长期关联模式的,而我们则利用图形的规律规律来控制所学静态图形的质量。为了捕捉变量之间的动态依赖性,我们提出了动态图形学习方法,以根据改变的节点特征和静态的内嵌嵌嵌入式(SDGDGL)。在这个方法中,我们将学到的静态图形矩阵信息作为感带偏差,构建动态图表和本地的时空模式。我们开发了固定的长期关系模式,在两种外数据运行方式上得到了更好的数据。

1
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
架构文摘
3+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
5+阅读 · 2021年2月15日
Arxiv
4+阅读 · 2020年9月28日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
架构文摘
3+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员