Fetal ultrasound screening during pregnancy plays a vital role in the early detection of fetal malformations which have potential long-term health impacts. The level of skill required to diagnose such malformations from live ultrasound during examination is high and resources for screening are often limited. We present an interpretable, atlas-learning segmentation method for automatic diagnosis of Hypo-plastic Left Heart Syndrome (HLHS) from a single `4 Chamber Heart' view image. We propose to extend the recently introduced Image-and-Spatial Transformer Networks (Atlas-ISTN) into a framework that enables sensitising atlas generation to disease. In this framework we can jointly learn image segmentation, registration, atlas construction and disease prediction while providing a maximum level of clinical interpretability compared to direct image classification methods. As a result our segmentation allows diagnoses competitive with expert-derived manual diagnosis and yields an AUC-ROC of 0.978 (1043 cases for training, 260 for validation and 325 for testing).
翻译:妊娠期间胎儿超声波检查在早期发现胎儿畸形方面起着重要作用,这种畸形有可能对健康产生长期影响。在检查期间从现场超声波中诊断此类畸形所需的技能水平很高,而且用于检查的资源往往有限。我们从一个单一的“4个空心”的视觉图像中提出了一个可解释的图集学习分解法,用于自动诊断休眠左心综合症(HLHS)。我们提议将最近推出的图像和空间变异网络(Atlas-SISTN)扩大到一个能够敏化地生成图象以适应疾病的框架。在这个框架内,我们可以联合学习图像分解、登记、图集构造和疾病预测,同时提供与直接图像分类方法相比的最大临床可解释性。因此,我们的分解法使得诊断与专家的人工诊断具有竞争力,并产生了0.978(培训1043例,验证260例,测试325例)。