Bibliographic and co-citation coupling are two analytical methods widely used to measure the degree of similarity between scientific papers. These approaches are intuitive, easy to put into practice, and computationally cheap. Moreover, they have been used to generate a map of science, allowing visualizing research field interactions. Nonetheless, these methods do not work unless two papers share a standard reference, limiting the two papers usability with no direct connection. In this work, we propose to extend bibliographic coupling to the deep neighborhood, by using graph diffusion methods. This method allows defining similarity between any two papers, making it possible to generate a local map of science, highlighting field organization.
翻译:书目和共同引用的结合是两种广泛的分析方法,用来衡量科学论文之间的相似程度。这些方法是直观的,易于付诸实践,而且计算成本低廉的。此外,这些方法还被用来绘制科学地图,使研究领域的互动可视化。然而,除非有两份论文共享标准参考,限制两种文件的可用性,而没有直接关联,否则这些方法是行不通的。在这项工作中,我们建议使用图表传播方法,将书目连接到深海相邻地区。这种方法可以界定任何两份论文的相似性,从而有可能绘制一份当地科学地图,突出实地组织。