In this paper we analyze, for a model of linear regression with gaussian covariates, the performance of a Bayesian estimator given by the mean of a log-concave posterior distribution with gaussian prior, in the high-dimensional limit where the number of samples and the covariates' dimension are large and proportional. Although the high-dimensional analysis of Bayesian estimators has been previously studied for Bayesian-optimal linear regression where the correct posterior is used for inference, much less is known when there is a mismatch. Here we consider a model in which the responses are corrupted by gaussian noise and are known to be generated as linear combinations of the covariates, but the distributions of the ground-truth regression coefficients and of the noise are unknown. This regression task can be rephrased as a statistical mechanics model known as the Gardner spin glass, an analogy which we exploit. Using a leave-one-out approach we characterize the mean-square error for the regression coefficients. We also derive the log-normalizing constant of the posterior. Similar models have been studied by Shcherbina and Tirozzi and by Talagrand, but our arguments are much more straightforward. An interesting consequence of our analysis is that in the quadratic loss case, the performance of the Bayesian estimator is independent of a global "temperature" hyperparameter and matches the ridge estimator: sampling and optimizing are equally good.


翻译:在本文中, 我们分析的是, 一种用百草枯共变的线性回归模型, 巴伊西亚的测深仪的性能, 一种由古撒之前的日志混血后部分布的平均值, 在高维限中, 样本数量和共变异的维度是大和比例的。 虽然巴耶西亚测深仪的高维分析以前曾为巴耶西亚- 优美的线性回归法进行了研究, 正确的后台用于推断, 但当出现不匹配时, 更不为人所知。 这里我们考虑的是一种模型, 其反应被古撒的噪音腐蚀性反应腐蚀了, 并被人们所知, 以古沙拉变的线性组合为基础, 但地面回归系数的分布和噪音是未知的。 这个回归任务可以被重新表述为统计力模型, 称为加德加德纳的螺旋玻璃, 我们利用这个比喻。 我们使用一个假一比喻的方法来描述回归系数的中度错误。 我们还从一个对正正的正值进行逻辑调整,, 也就是的比喻的比喻是我们所研究的比喻。 。 我们的平比喻的比喻, 。 我们的平比喻的比喻是更直接的模型的模型的模型是 。 。 。 我们的精确的模型的模型的模型的模型是更精确的精确的精确的模型的模型的模型的模型是 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
30+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员