Due to the pervasiveness of image capturing devices in every-day life, images of individuals are routinely captured. Although this has enabled many benefits, it also infringes on personal privacy. A promising direction in research on obfuscation of facial images has been the work in the k-same family of methods which employ the concept of k-anonymity from database privacy. However, there are a number of deficiencies of k-anonymity that carry over to the k-same methods, detracting from their usefulness in practice. In this paper, we first outline several of these deficiencies and discuss their implications in the context of facial obfuscation. We then develop a framework through which we obtain a formal differentially private guarantee for the obfuscation of facial images in generative machine learning models. Our approach provides a provable privacy guarantee that is not susceptible to the outlined deficiencies of k-same obfuscation and produces photo-realistic obfuscated output. In addition, we demonstrate through experimental comparisons that our approach can achieve comparable utility to k-same obfuscation in terms of preservation of useful features in the images. Furthermore, we propose a method to achieve differential privacy for any image (i.e., without restriction to facial images) through the direct modification of pixel intensities. Although the addition of noise to pixel intensities does not provide the high visual quality obtained via generative machine learning models, it offers greater versatility by eliminating the need for a trained model. We demonstrate that our proposed use of the exponential mechanism in this context is able to provide superior visual quality to pixel-space obfuscation using the Laplace mechanism.


翻译:由于图像捕捉装置在日常生活中的普及性,个人图像被例行捕捉。虽然这可以带来许多好处,但也侵犯了个人隐私。关于面部图像模糊化的研究的一个很有希望的方向是使用数据库隐私K-匿名概念的K-Same系列方法。然而,由于K-Same方法存在一些k-匿名性缺陷,这些缺陷传到K-Same方法中,从而降低了它们的实际用途。在本文中,我们首先概述了其中的一些缺陷,并讨论了这些缺陷在面部模糊化背景下的影响。然后我们开发了一个框架,通过这个框架,我们获得对基因化机器学习模型中面部图像模糊化的正式、有区别的私人担保。我们的方法提供了一种可调和的隐私保障,而这种隐蔽性与光真实性模型的模糊性不相符。此外,我们通过实验性比较,我们的方法可以在面部模糊化的面部模糊化背景下实现可比较的功能。我们通过经过培训的图像保存方法,提供了一种不直接的精细化的图像。此外,我们通过直接的图像修正方法提供了一种可理解性的方法。我们用一种可理解性的方法,我们用这种方法来解释的精细化的精化的精化的精度来提供。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
22+阅读 · 2021年4月10日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
0+阅读 · 2021年4月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员