Face presentation attack detection plays a critical role in the modern face recognition pipeline. A face presentation attack detection model with good generalization can be obtained when it is trained with face images from different input distributions and different types of spoof attacks. In reality, training data (both real face images and spoof images) are not directly shared between data owners due to legal and privacy issues. In this paper, with the motivation of circumventing this challenge, we propose a Federated Face Presentation Attack Detection (FedPAD) framework that simultaneously takes advantage of rich fPAD information available at different data owners while preserving data privacy. In the proposed framework, each data center locally trains its own fPAD model. A server learns a global fPAD model by iteratively aggregating model updates from all data centers without accessing private data in each of them. To equip the aggregated fPAD model in the server with better generalization ability to unseen attacks from users, following the basic idea of FedPAD, we further propose a Federated Generalized Face Presentation Attack Detection (FedGPAD) framework. A federated domain disentanglement strategy is introduced in FedGPAD, which treats each data center as one domain and decomposes the fPAD model into domain-invariant and domain-specific parts in each data center. Two parts disentangle the domain-invariant and domain-specific features from images in each local data center, respectively. A server learns a global fPAD model by only aggregating domain-invariant parts of the fPAD models from data centers and thus a more generalized fPAD model can be aggregated in server. We introduce the experimental setting to evaluate the proposed FedPAD and FedGPAD frameworks and carry out extensive experiments to provide various insights about federated learning for fPAD.


翻译:在现代面部识别管道中, 面部显示器显示器显示器显示器检测器具有关键作用。 面部显示器显示器检测模型在使用来自不同输入分布和不同类型攻击的面部图像进行培训时, 可以取得具有良好通用性的面部显示器检测模型。 事实上, 由于法律和隐私问题, 数据所有者之间没有直接共享培训数据( 真实面部图像和表面图像) 。 在本文中, 为了避免这一挑战, 我们提议了一个联邦面部显示器攻击检测( FedPAD)框架, 该框架同时利用不同数据所有者现有的丰富的FPAD信息, 并同时保存数据隐私。 在拟议框架中, 每个数据中心都用自己的 FPAD 模型来训练自己的域域内服务器模型。 一个服务器通过迭接地汇总所有数据中心的模型更新来学习全球FPADD模式。 因此, 为了在服务器中使综合的FPADA模型更能概括地显示器攻击用户的暗攻击, 我们进一步提议一个FDDGPA 模型( FedGADA) 框架。 一个化域域域的解算出一个FGPAD模型, 在内部的每个域域域域域内, 将每个域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域域数据作为数据库学习每个域域域域域域域域域域域域域域域数据, 学习每个域数据。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
33+阅读 · 2020年12月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
39+阅读 · 2020年9月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
106+阅读 · 2020年5月3日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
3+阅读 · 2017年10月27日
Arxiv
10+阅读 · 2021年3月30日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月5日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
已删除
将门创投
3+阅读 · 2017年10月27日
相关论文
Arxiv
10+阅读 · 2021年3月30日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
Arxiv
3+阅读 · 2018年6月5日
Arxiv
5+阅读 · 2018年5月16日
Top
微信扫码咨询专知VIP会员