In this paper we apply a nonconforming rotated bilinear tetrahedral element to the Stokes problem in $\mathbb{R}^3$. We show that the element is stable in combination with a piecewise linear, continuous, approximation of the pressure. This gives an approximation similar to the well known continuous $P^2-P^1$ Taylor$-$Hood element, but with fewer degrees of freedom. The element is a stable non-conforming low order element which fulfils Korn's inequality, leading to stability also in the case where the Stokes equations are written on stress form for use in the case of free surface flow.
翻译:在本文中,我们对斯托克斯问题应用了一个不兼容的旋转双线四面体元素, 以$\ mathbb{R ⁇ 3$计算。 我们显示, 该元素与压力的片状线性、 连续、 近似性相结合是稳定的。 这提供了类似于已知连续连续的 $P ⁇ 2-P ⁇ 1$Taylor$-$Hood 元素的近似值, 但自由度较低。 元素是一个稳定的不兼容低顺序元素, 满足了科恩的不平等, 在斯托克斯方程式以压力形式写成, 用于自由地表流动的情况下, 也导致稳定性 。