In this work we introduce a certified Reduced Basis VMS-Smagorinsky turbulence model with local projection stabilisation (LPS) on the pressure. We prove its stability for Taylor-Hood discretisations of velocity-pressure. We construct an \textit{a posteriori} error estimator for the snapshot selection through a Greedy algorithm, based on the Brezzi-Rappaz-Raviart theory of approximation of non-singular branches of non-linear PDEs. The Empirical Interpolation Method (EIM) is used for the approximation of the non-linear terms. We present some numerical tests in which we show an improved speedup on the computation of the reduced basis problem with the LPS pressure stabilisation, with respect to the method of using pressure supremizers.
翻译:在这项工作中,我们引入了经认证的低底基VMS-Smagorinsky气流模型,该模型对压力具有局部投影稳定作用。我们证明了它对于泰勒-Hood速度压力分解的稳定性。我们根据Brezzi-Rappaz-Raviart非线性PDEs非线性分支近似理论,为通过贪婪算法选择快片设计了一个计算误差估计器。在非线性条件近似时,使用了经验性内插方法。我们提出了一些数字测试,显示在计算减低基问题时,与LPS压力稳定法相比,我们在使用压力增压器的方法方面加快了速度。