In decoding linear block codes, it was shown that noticeable reliability gains can be achieved by introducing learnable parameters to the Belief Propagation (BP) decoder. Despite the success of these methods, there are two key open problems. The first is the lack of interpretation of the learned weights, and the other is the lack of analysis for non-AWGN channels. In this work, we aim to bridge this gap by providing insights into the weights learned and their connection to the structure of the underlying code. We show that the weights are heavily influenced by the distribution of short cycles in the code. We next look at the performance of these decoders in non-AWGN channels, both synthetic and over-the-air channels, and study the complexity vs. performance trade-offs, demonstrating that increasing the number of parameters helps significantly in complex channels. Finally, we show that the decoders with learned weights achieve higher reliability than those with weights optimized analytically under the Gaussian approximation.


翻译:在解码线性块代码时,已经显示出通过向置信传播(BP)解码器引入可学习参数可以实现显着的可靠性增益。尽管这些方法的成功,但存在两个关键问题。第一个是缺乏所学权重的解释,另一个是缺乏针对非 AWGN 信道的分析。在这项工作中,我们旨在通过提供对学习权重及其与基础代码结构的联系的见解来弥合这一差距。我们表明,权重受代码中短周期分布的影响很大。接下来,我们研究这些解码器在非 AWGN 信道中的性能,包括合成信道和实际信道,并研究复杂性与性能的权衡,证明增加参数数量在复杂信道中有很大帮助。最后,我们表明,具有学习权重的解码器比通过高斯逼近在解析方面优化的解码器具有更高的可靠性。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年1月26日
专知会员服务
52+阅读 · 2020年11月17日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月28日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月28日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
19+阅读 · 2018年10月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员