This paper proposes a Fully Spiking Hybrid Neural Network (FSHNN) for energy-efficient and robust object detection in resource-constrained platforms. The network architecture is based on Convolutional SNN using leaky-integrate-fire neuron models. The model combines unsupervised Spike Time-Dependent Plasticity (STDP) learning with back-propagation (STBP) learning methods and also uses Monte Carlo Dropout to get an estimate of the uncertainty error. FSHNN provides better accuracy compared to DNN based object detectors while being 150X energy-efficient. It also outperforms these object detectors, when subjected to noisy input data and less labeled training data with a lower uncertainty error.
翻译:本文提议在资源受限制的平台上建立一个全面监视混合神经网络(FSHNN),用于对受资源限制的平台进行节能和稳健的物体探测。网络结构以革命性 SNN为基础,使用泄漏的内密点-燃烧神经模型。模型结合了不受监督的Spik 时间依赖性可塑性(STDP)学习与后推进(STBP)学习方法相结合,并使用蒙特卡洛漏流来估计不确定性错误。FSHNN提供比基于DNN的物体探测器更好的准确性,而DNN是150X节能的。当受到噪音输入数据和标签较少的训练数据的影响时,该模型也比这些物体探测器的精确性要强,但受噪音输入数据的影响时,其误差较小。