Training deep neural networks via federated learning allows clients to share, instead of the original data, only the model trained on their data. Prior work has demonstrated that in practice a client's private information, unrelated to the main learning task, can be discovered from the model's gradients, which compromises the promised privacy protection. However, there is still no formal approach for quantifying the leakage of private information via the shared updated model or gradients. In this work, we analyze property inference attacks and define two metrics based on (i) an adaptation of the empirical $\mathcal{V}$-information, and (ii) a sensitivity analysis using Jacobian matrices allowing us to measure changes in the gradients with respect to latent information. We show the applicability of our proposed metrics in localizing private latent information in a layer-wise manner and in two settings where (i) we have or (ii) we do not have knowledge of the attackers' capabilities. We evaluate the proposed metrics for quantifying information leakage on three real-world datasets using three benchmark models.
翻译:通过联盟式学习进行深层培训神经网络,使客户能够分享,而不是原始数据,只有经过数据培训的模型; 先前的工作表明,在实践中,客户的私人信息,与主要学习任务无关,可以从模型的梯度中发现,这有损于所承诺的隐私保护; 然而,仍然没有正式的方法来量化通过共享更新模式或梯度泄漏的私人信息; 在这项工作中,我们分析财产推断攻击,并根据(一) 对实证$mathcal{V}$信息进行修改,以及(二) 利用Jacobian矩阵进行敏感度分析,以便我们用三种基准模型衡量三个真实世界数据集信息泄漏情况的变化。 我们用三种基准模型来评估拟议指标,用以衡量三个真实世界数据集信息泄漏情况。 我们用三种基准模型评估拟议指标,用以衡量三个真实世界数据集信息泄漏情况。