Textual descriptions of the physical world implicitly mention commonsense facts, while the commonsense knowledge bases explicitly represent such facts as triples. Compared to dramatically increased text data, the coverage of existing knowledge bases is far away from completion. Most of the prior studies on populating knowledge bases mainly focus on Freebase. To automatically complete commonsense knowledge bases to improve their coverage is under-explored. In this paper, we propose a new task of mining commonsense facts from the raw text that describes the physical world. We build an effective new model that fuses information from both sequence text and existing knowledge base resource. Then we create two large annotated datasets each with approximate 200k instances for commonsense knowledge base completion. Empirical results demonstrate that our model significantly outperforms baselines.


翻译:物理世界的文字描述隐含地提到了常识事实,而常识知识基础明确代表了三重事实。 与剧增的文本数据相比,现有知识基础的覆盖范围远未完成。 以往关于传播知识基础的大多数研究主要侧重于Freebase。 要自动完成常识知识基础以扩大其覆盖面,探索不足。 在本文中,我们提议一项新的任务,即从描述物理世界的原始文本中挖掘常识事实。 我们建立了一个有效的新模型,将序列文本和现有知识基础资源的信息结合在一起。 然后,我们创建了两个大型的附加说明的数据集,每个数据集约有200千例,用于完成常识知识基础的完成。 经验结果显示,我们的模型大大超过基线。

0
下载
关闭预览

相关内容

【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2019年11月26日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
VIP会员
相关VIP内容
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员