The idea of using machine learning (ML) methods to reconstruct the dynamics of a system is the topic of recent studies in the geosciences, in which the key output is a surrogate model meant to emulate the dynamical model. In order to treat sparse and noisy observations in a rigorous way, ML can be combined to data assimilation (DA). This yields a class of iterative methods in which, at each iteration a DA step assimilates the observations, and alternates with a ML step to learn the underlying dynamics of the DA analysis. In this article, we propose to use this method to correct the error of an existent, knowledge-based model. In practice, the resulting surrogate model is an hybrid model between the original (knowledge-based) model and the ML model. We demonstrate numerically the feasibility of the method using a two-layer, two-dimensional quasi-geostrophic channel model. Model error is introduced by the means of perturbed parameters. The DA step is performed using the strong-constraint 4D-Var algorithm, while the ML step is performed using deep learning tools. The ML models are able to learn a substantial part of the model error and the resulting hybrid surrogate models produce better short- to mid-range forecasts. Furthermore, using the hybrid surrogate models for DA yields a significantly better analysis than using the original model.
翻译:使用机器学习(ML)方法重建系统动态的想法是地球科学最近研究的主题,其中关键输出是用来模仿动态模型的替代模型。为了严格处理稀少和噪音的观测,ML可以与数据同化(DA)相结合。这产生了一组迭接方法,在每次迭代中,DA一步吸收观察,并用ML步骤替代ML步骤学习DA分析的基本动态。在本条中,我们提议使用这种方法纠正现有知识型模型的错误。在实践中,由此产生的替代模型是原始(基于知识的)模型和ML模型之间的混合模型。我们用数字方式展示该方法的可行性,使用两层、两维半地质信道模型。模型通过扰动参数手段引入了模型错误。DA步骤使用强的4D-Var算法,同时使用深层学习工具进行ML步骤的错误。ML模型产生的代为原始(基于知识的)模型和ML模型之间的混合模型。ML模型能够使用更好的混合模型,从而用更好的混合模型来生成一个更好的混合模型。ML模型,并且利用一个更好的混合模型,从而产生更好的混合模型的中期模型。