Gradual argumentation frameworks represent arguments and their relationships in a weighted graph. Their graphical structure and intuitive semantics makes them a potentially interesting tool for interpretable machine learning. It has been noted recently that their mechanics are closely related to neural networks, which allows learning their weights from data by standard deep learning frameworks. As a first proof of concept, we propose a genetic algorithm to simultaneously learn the structure of argumentative classification models. To obtain a well interpretable model, the fitness function balances sparseness and accuracy of the classifier. We discuss our algorithm and present first experimental results on standard benchmarks from the UCI machine learning repository. Our prototype learns argumentative classification models that are comparable to decision trees in terms of learning performance and interpretability.


翻译:渐进参数框架在加权图中代表参数及其关系。它们的图形结构和直观语义使它们成为解释机器学习的潜在有趣工具。最近人们注意到,它们的机械与神经网络密切相关,通过标准的深层次学习框架从数据中学习权重。作为概念的第一个证明,我们建议采用遗传算法,同时学习参数分类模型的结构。为了获得一个可以很好解释的模型,健身功能平衡了分类器的分散性和准确性。我们讨论我们的算法,并首次根据UCI机器学习库的标准基准提出实验结果。我们的原型在学习性能和可解释性方面可以与决策树相比的参数分类模型。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
24+阅读 · 2021年1月25日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
6+阅读 · 2019年4月25日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
24+阅读 · 2021年1月25日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
6+阅读 · 2019年4月25日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
10+阅读 · 2017年12月29日
Top
微信扫码咨询专知VIP会员