The liquid state machine (LSM) combines low training complexity and biological plausibility, which has made it an attractive machine learning framework for edge and neuromorphic computing paradigms. Originally proposed as a model of brain computation, the LSM tunes its internal weights without backpropagation of gradients, which results in lower performance compared to multi-layer neural networks. Recent findings in neuroscience suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics, tuning brain networks to the vicinity of the computationally optimal critical phase transition between order and chaos. Inspired by this disruptive understanding of how brain networks self-tune, we propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics. Similar to its biological counterpart, the astrocyte model integrates neuronal activity and provides global feedback to spike-timing-dependent plasticity (STDP), which self-organizes NALSM dynamics around a critical branching factor that is associated with the edge-of-chaos. We demonstrate that NALSM achieves state-of-the-art accuracy versus comparable LSM methods, without the need for data-specific hand-tuning. With a top accuracy of 97.61% on MNIST, 97.51% on N-MNIST, and 85.84% on Fashion-MNIST, NALSM achieved comparable performance to current fully-connected multi-layer spiking neural networks trained via backpropagation. Our findings suggest that the further development of brain-inspired machine learning methods has the potential to reach the performance of deep learning, with the added benefits of supporting robust and energy-efficient neuromorphic computing on the edge.
翻译:液态机器(LSM)结合了低培训复杂性和生物可视性,使得它成为了边缘和神经变异计算模式的有吸引力的机器学习框架。 最初作为大脑计算模型,LSM调整内部重量,不反向地对梯度进行反射,这导致与多层神经网络相比性能较低。 神经科学的最近发现表明,天体细胞,一个长期被忽视的非中心脑细胞,调节神经同步性可塑性和大脑动态,将大脑网络调整到接近计算上最优的关键阶段在秩序和混乱之间过渡的边缘。由于对大脑网络自我调节的破坏性理解,LSMM在不反向性能上调,我们建议神经-气态液态液体状态机器(NALSM)通过自我组织近临界动态,处理性能问题。 与生物对等,星系细胞细胞细胞模型整合神经活动,并为基于内心力的内向后向的内向性硬性运动(STDP)提供全球反馈, 将NALSMM动态的自我组织围绕着一个关键的直径直径直径的直流数据,我们通过直径直径的直径直径的功能学习的功能, 的机率的机能, 的机率的机率的机率的机能测试的机能显示的机能显示的机能显示, 显示,在SMMMMMMML的机能的机能的机能学的机能学的机能, 的机能学的机能与我们的机能与我们的机能学,在SML的机能学上,在轨性能学上, 学习了一个完全的机能定位的机能定位的机能与我们的直向的机能的机能学, 。