Shadow tomography for quantum states provides a sample efficient approach for predicting the properties of quantum systems when the properties are restricted to expectation values of $2$-outcome POVMs. However, these shadow tomography procedures yield poor bounds if there are more than 2 outcomes per measurement. In this paper, we consider a general problem of learning properties from unknown quantum states: given an unknown $d$-dimensional quantum state $\rho$ and $M$ unknown quantum measurements $\mathcal{M}_1,...,\mathcal{M}_M$ with $K\geq 2$ outcomes, estimating the probability distribution for applying $\mathcal{M}_i$ on $\rho$ to within total variation distance $\epsilon$. Compared to the special case when $K=2$, we need to learn unknown distributions instead of values. We develop an online shadow tomography procedure that solves this problem with high success probability requiring $\tilde{O}(K\log^2M\log d/\epsilon^4)$ copies of $\rho$. We further prove an information-theoretic lower bound that at least $\Omega(\min\{d^2,K+\log M\}/\epsilon^2)$ copies of $\rho$ are required to solve this problem with high success probability. Our shadow tomography procedure requires sample complexity with only logarithmic dependence on $M$ and $d$ and is sample-optimal for the dependence on $K$.
翻译:量子状态的影形图象提供了一种样本高效的方法,用于预测量子系统的特性, 当特性限于预期值$2美元时, 量子量子体的特性只能以2美元计算。 但是, 如果每个测量超过2个结果, 这些影形量子仪程序会产生差义。 在本文中, 我们考虑从未知量子状态中学习属性的一般问题 : 鉴于一个未知的美元- 维量状态$/ rho$ 和 $ 未知量子测量 $\ mathcal{ 1:...,\ mathcal{ m ⁇ m{ $2美元, 估计应用$\ geq2美元的预期值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值的值值值值值值值值值值值值值值值值值值值值值值值值值值值值值内的值值值值值值值值值值值值值值值值值值值值值值值值值值值值内的值值值值值值值值值值值值值值内, 。 我们开发量量量量量量量量量量量量量量量量量量量量量值值值值值值值值值值值量值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值的概率的概率的概率的概率的量值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值