We propose a Laplace approximation that creates a stochastic unit from any smooth monotonic activation function, using only Gaussian noise. This paper investigates the application of this stochastic approximation in training a family of Restricted Boltzmann Machines (RBM) that are closely linked to Bregman divergences. This family, that we call exponential family RBM (Exp-RBM), is a subset of the exponential family Harmoniums that expresses family members through a choice of smooth monotonic non-linearity for each neuron. Using contrastive divergence along with our Gaussian approximation, we show that Exp-RBM can learn useful representations using novel stochastic units.
翻译:我们建议使用拉普尔近似值来从任何平滑的单声振动功能中产生一个随机单位, 仅使用高斯噪音。 本文调查了在训练一个与布雷格曼差异密切相关的受限波尔茨曼机器( RBM ) 家庭时应用的这种随机近似值。 我们称之为指数式家庭成果管理制( Exp- RBM ), 这个家庭是指数式家庭和谐度的子集, 它通过为每个神经元选择平滑的单声非线性来表达家庭成员。 我们利用与我们高斯曼近似值的对比差异, 显示Exp- RBM 可以通过新型的随机单位学习有用的表达方式。