The linear contextual bandit literature is mostly focused on the design of efficient learning algorithms for a given representation. However, a contextual bandit problem may admit multiple linear representations, each one with different characteristics that directly impact the regret of the learning algorithm. In particular, recent works showed that there exist "good" representations for which constant problem-dependent regret can be achieved. In this paper, we first provide a systematic analysis of the different definitions of "good" representations proposed in the literature. We then propose a novel selection algorithm able to adapt to the best representation in a set of $M$ candidates. We show that the regret is indeed never worse than the regret obtained by running LinUCB on the best representation (up to a $\ln M$ factor). As a result, our algorithm achieves constant regret whenever a "good" representation is available in the set. Furthermore, we show that the algorithm may still achieve constant regret by implicitly constructing a "good" representation, even when none of the initial representations is "good". Finally, we empirically validate our theoretical findings in a number of standard contextual bandit problems.


翻译:线性背景土匪文献主要侧重于设计针对特定代表的高效学习算法。 但是,背景土匪问题可能承认多个线性表述,每个具有不同特征的表述都直接影响到学习算法的遗憾。 特别是,最近的工作表明,存在“ 良好” 的表述,可以持续地因问题而感到遗憾。 在本文中,我们首先对文献中提议的“良好”表述的不同定义进行系统分析,然后我们提出一种新的选择算法,能够适应一组美元候选人中的最佳表述。我们表明,在最佳代表法上运行LinUCB所获得的遗憾(最高达1美元要素 ), 确实不会比运行LinUCB获得的遗憾更糟糕。 结果,当“良好”表达法在集中出现时,我们的算法总是会后悔。 此外,我们表明,即使最初的表述没有“良好”表述,我们还是可以通过隐含地构建一个“良好”的表达法来实现持续遗憾, 即使最初的表述没有“良好” 。 最后,我们从经验上证实我们在一些标准背景部落问题的理论结论。

0
下载
关闭预览

相关内容

必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关VIP内容
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员