A timeline provides one of the most effective ways to visualize the important historical facts that occurred over a period of time, presenting the insights that may not be so apparent from reading the equivalent information in textual form. By leveraging generative adversarial learning for important sentence classification and by assimilating knowledge based tags for improving the performance of event coreference resolution we introduce a two staged system for event timeline generation from multiple (historical) text documents. We demonstrate our results on two manually annotated historical text documents. Our results can be extremely helpful for historians, in advancing research in history and in understanding the socio-political landscape of a country as reflected in the writings of famous personas.
翻译:时间表提供了一种最有效的方法,可以想象一段时间以来发生的重要历史事实,展示从读出文本形式的同等信息可能不那么明显的洞察力。通过利用基因对抗性学习进行重要的判决分类,并通过同化基于知识的标记来改进事件共同参照决议的性能,我们引入了两个阶段式的系统,用多种(历史)文本文件生成事件时间表。我们展示了我们用两个人工手写的附加说明的历史文本文件的结果。我们的结果对于历史学家、推进历史研究以及了解一个著名人物的著作中反映的国家的社会政治面貌极为有益。