An accurate and detailed account of patient medications, including medication changes within the patient timeline, is essential for healthcare providers to provide appropriate patient care. Healthcare providers or the patients themselves may initiate changes to patient medication. Medication changes take many forms, including prescribed medication and associated dosage modification. These changes provide information about the overall health of the patient and the rationale that led to the current care. Future care can then build on the resulting state of the patient. This work explores the automatic extraction of medication change information from free-text clinical notes. The Contextual Medication Event Dataset (CMED) is a corpus of clinical notes with annotations that characterize medication changes through multiple change-related attributes, including the type of change (start, stop, increase, etc.), initiator of the change, temporality, change likelihood, and negation. Using CMED, we identify medication mentions in clinical text and propose three novel high-performing BERT-based systems that resolve the annotated medication change characteristics. We demonstrate that our proposed architectures improve medication change classification performance over the initial work exploring CMED. We identify medication mentions with high performance at 0.959 F1, and our proposed systems classify medication changes and their attributes at an overall average of 0.827 F1.
翻译:准确和详细地说明病人的药物情况,包括病人时间表内药品的变化,是保健提供者提供适当病人护理的关键,保健提供者或病人本人可以对病人药物进行改变,保健提供者或病人本身可以对病人药物进行改变,药品改变有多种形式,包括处方药品和有关的剂量改变,这些改变提供关于病人总体健康状况和导致目前护理的理由的资料,将来的护理可以以病人的病情为基础,将来的护理可以以病人的病情为基础。这项工作探讨从免费文本的临床说明中自动提取药物改变信息。环境医疗事件数据集(CMED)是一系列附有说明的临床说明,通过多种与变化有关的特性,包括变化类型(开始、停止、增加等)、变化的发起者、时间性、改变的可能性和否定,说明药物改变的类型。我们利用CMED确定药物在临床文本中提及的情况,并提出三个新的高效BERT基础系统,解决附加说明的药物变化特点。我们证明,我们拟议的结构改进了药物变化分类工作在探索CMED的初始工作中的绩效。我们发现药物提到高性,我们提议的系统在0.95911和0.827的药物变化及其特性在平均的系统分类。