Knowledge Graph Completion is a task of expanding the knowledge graph/base through estimating possible entities, or proper nouns, that can be connected using a set of predefined relations, or verb/predicates describing interconnections of two things. Generally, we describe this problem as adding new edges to a current network of vertices and edges. Traditional approaches mainly focus on using the existing graphical information that is intrinsic of the graph and train the corresponding embeddings to describe the information; however, we think that the corpus that are related to the entities should also contain information that can positively influence the embeddings to better make predictions. In our project, we try numerous ways of using extracted or raw textual information to help existing KG embedding frameworks reach better prediction results, in the means of adding a similarity function to the regularization part in the loss function. Results have shown that we have made decent improvements over baseline KG embedding methods.


翻译:完成知识图是一项任务,即通过估计可能的实体或适当的名词来扩大知识图/基础,这些实体可以通过一套预先确定的关系或动词/预言来连接,或者通过描述两种事物的相互联系。一般来说,我们把这个问题描述为在目前的脊椎和边缘网络中增加新的边缘。传统方法主要侧重于使用图中固有的现有图形信息,并培训相应的嵌入来描述信息;然而,我们认为,与实体相关的材料还应包含能够积极影响嵌入的信息,从而更好地作出预测。在我们的项目中,我们尝试了多种方法,利用提取或原始文本信息来帮助现有的 KG 嵌入框架取得更好的预测结果,从而在损失函数的正规化部分增加类似功能。结果显示,我们在基线 KG 嵌入方法方面已经做了体面的改进。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
7+阅读 · 2018年8月21日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
相关资讯
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
论文浅尝 | Open world Knowledge Graph Completion
开放知识图谱
19+阅读 · 2018年1月30日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员