This work gives a blind beamforming strategy for intelligent reflecting surface (IRS), aiming to boost the received signal-to-noise ratio (SNR) by coordinating phase shifts across reflective elements in the absence of channel information. While the existing methods of IRS beamforming typically first estimate channels and then optimize phase shifts, we propose a conditional sample mean based statistical approach that explores the wireless environment via random sampling without performing any channel estimation. Remarkably, the new method just requires a polynomial number of random samples to yield an SNR boost that is quadratic in the number of reflective elements, whereas the standard random-max sampling algorithm can only achieve a linear boost under the same condition. Moreover, we gain additional insight into blind beamforming by interpreting it as a least squares problem. Field tests demonstrate the significant advantages of the proposed blind beamforming algorithm over the benchmark algorithms in enhancing wireless transmission.
翻译:这项工作提供了智能反射表面(IRS)的盲光光束成型战略,目的是通过协调在没有频道信息的情况下对反射元素的相向移动来提升收到的信号对噪音比率(SNR),在没有频道信息的情况下对反射元素进行相向移动协调。尽管IRS的现用光束成法通常先对频道进行估计,然后优化相向移动,但我们建议了一种有条件的样本平均统计法,通过随机抽样来探索无线环境,而无需做任何频道估计。值得注意的是,新方法只需要多数值的随机样本才能产生在反射元素数量中具有四重度的 SNR 推力,而标准随机负载取样算法只能在同一条件下实现线性推力。此外,我们通过将盲光形成成光束作为最小平方问题来获得更多的洞察力。实地测试表明拟议的盲形算法对于加强无线传输的基准算法的重大优势。