This work presents a novel reduced-order model (ROM) for the incompressible Navier-Stokes equations with time-dependent boundary conditions. This ROM is velocity-only, i.e. the simulation of the velocity does not require the computation of the pressure, and preserves the structure of the kinetic energy evolution. The key ingredient of the novel ROM is a decomposition of the velocity into a field with homogeneous boundary conditions and a lifting function that satisfies the mass equation with the prescribed inhomogeneous boundary conditions. This decomposition is inspired by the Helmholtz-Hodge decomposition and exhibits orthogonality of the two components. This orthogonality is crucial to preserve the structure of the kinetic energy evolution. To make the evaluation of the lifting function efficient, we propose a novel method that involves an explicit approximation of the boundary conditions with POD modes, while preserving the orthogonality of the velocity decomposition and thus the structure of the kinetic energy evolution. We show that the proposed velocity-only ROM is equivalent to a velocity-pressure ROM, i.e., a ROM that simulates both velocity and pressure. This equivalence can be generalized to other existing velocity-pressure ROMs and reveals valuable insights in their behaviour. Numerical experiments on test cases with inflow-outflow boundary conditions confirm the correctness and efficiency of the new ROM, and the equivalence with the velocity-pressure formulation.
翻译:这项工作为不压缩的 Navier- Stokes 等式提供了一个新型的降序模型( ROM ), 符合基于时间的边界条件。 这个 ROM 只能是速度, 即速度的模拟不需要计算压力, 并且保存动能进化的结构。 新的 ROM 的关键成分是将速度分解成一个具有同质边界条件的字段, 以及一个能满足质量方程的升动功能。 这种分解是由Helmholtz- Hodge 分解和两个组成部分的显示速度或速度所启发的。 这个或度对于保持感动性能量进化的结构并不需要计算压力, 并且保存动能进化能量进化的结构。 为了高效地评估升动功能, 我们提出了一个新颖的方法, 它涉及将边界条件与速度分解的分解和运动的进化结构。 我们表明, 拟议的只使用速度- Hodge- hoge 分解器的分解和两个组成部分的变异性( ) 和变异性( 等值) 等值的货币- 等值 等值 等值的货币- 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值 等值