In this paper, we propose an efficient ordered-statistics decoding (OSD) algorithm with an adaptive Gaussian elimination (GE) reduction technique. The proposed decoder utilizes two decoding conditions to adaptively remove GE in OSD. The first condition determines whether GE could be skipped in the OSD process by estimating the decoding error probability. Then, the second condition is utilized to identify the correct decoding result during the decoding process without GE. The proposed decoder can break the ``complexity floor'' in OSD decoders introduced by the GE overhead. Simulation results advise that when compared with the latest schemes in the literature, the proposed approach can significantly reduce the decoding complexity at high SNRs without any degradation in the error-correction capability.


翻译:在本文中,我们建议采用适应性高斯消除技术的高效有序统计解码算法。提议的解码器使用两种解码条件来在OSD中适应性地去除GE。第一个条件决定了在OSD进程中是否可以通过估计解码误差概率而跳过GE。然后,第二个条件被用来确定解码过程中的正确解码结果,而没有GE。提议的解码器可以打破GE间接费用引入的OSD解码器中的“复合底线 ” 。模拟结果表明,与文献中的最新计划相比,拟议的方法可以大大减少高SRR的解码复杂性,而不会降低错误校正能力。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月23日
Arxiv
0+阅读 · 2023年2月21日
Arxiv
0+阅读 · 2023年2月21日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员