Given a finite, simple, connected graph $G=(V,E)$ with $|V|=n$, we consider the associated graph Laplacian matrix $L = D - A$ with eigenvalues $0 = \lambda_1 < \lambda_2 \leq \dots \leq \lambda_n$. One can also consider the same graph equipped with positive edge weights $w:E \rightarrow \mathbb{R}_{> 0}$ normalized to $\sum_{e \in E} w_e = |E|$ and the associated weighted Laplacian matrix $L_w$. We say that $G$ is conformally rigid if constant edge-weights maximize the second eigenvalue $\lambda_2(w)$ of $L_w$ over all $w$, and minimize $\lambda_n(w')$ of $L_{w'}$ over all $w'$, i.e., for all $w,w'$, $$ \lambda_2(w) \leq \lambda_2(1) \leq \lambda_n(1) \leq \lambda_n(w').$$ Conformal rigidity requires an extraordinary amount of symmetry in $G$. Every edge-transitive graph is conformally rigid. We prove that every distance-regular graph, and hence every strongly-regular graph, is conformally rigid. Certain special graph embeddings can be used to characterize conformal rigidity. Cayley graphs can be conformally rigid but need not be, we prove a sufficient criterion. We also find a small set of conformally rigid graphs that do not belong into any of the above categories; these include the Hoffman graph, the crossing number graph 6B and others. Conformal rigidity can be certified via semidefinite programming, we provide explicit examples.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
141+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
25+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
71+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
18+阅读 · 2021年3月16日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
13+阅读 · 2018年4月18日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
71+阅读 · 2016年11月26日
相关论文
Arxiv
68+阅读 · 2022年9月7日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
18+阅读 · 2021年3月16日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
13+阅读 · 2018年4月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员