Event extraction (EE), the task that identifies event triggers and their arguments in text, is usually formulated as a classification or structured prediction problem. Such models usually reduce labels to numeric identifiers, making them unable to take advantage of label semantics (e.g. an event type named Arrest is related to words like arrest, detain, or apprehend). This prevents the generalization to new event types. In this work, we formulate EE as a natural language generation task and propose GenEE, a model that not only captures complex dependencies within an event but also generalizes well to unseen or rare event types. Given a passage and an event type, GenEE is trained to generate a natural sentence following a predefined template for that event type. The generated output is then decoded into trigger and argument predictions. The autoregressive generation process naturally models the dependencies among the predictions -- each new word predicted depends on those already generated in the output sentence. Using carefully designed input prompts during generation, GenEE is able to capture label semantics, which enables the generalization to new event types. Empirical results show that our model achieves strong performance on event extraction tasks under all zero-shot, few-shot, and high-resource scenarios. Especially, in the high-resource setting, GenEE outperforms the state-of-the-art model on argument extraction and gets competitive results with the current best on end-to-end EE tasks.
翻译:事件提取( EE), 确定事件触发器及其文本中参数的任务, 通常被设计成一个分类或结构化的预测问题 。 这些模型通常会将标签降低为数字标识符, 使其无法利用标签语义( 例如, 名为逮捕的事件类型与逮捕、 拘留或逮捕等词有关 ) 。 这使得无法对新事件类型进行概括化 。 在这项工作中, 我们将 EE 设计为自然语言生成任务, 并提议 GENEEE, 这个模型不仅能捕捉事件内部的复杂依赖性, 而且还能捕捉到不可见或稀有事件类型。 由于一个段落和事件类型, GENEE 接受培训, 可以在该事件类型预设模板模板后生成自然句句子, 使其无法使用自然句子的自然句子 。 EPIE 生成的结果随后被解码为触发和参数预测 。 自动递增生成过程, 每个新单词都取决于输出句子中已经生成的内容 。 GENEE 能够捕捉取标签语义的语义,,, 使该标签语义能够将普通化为新事件类型。 。 EPrialalalalal- laus laus