Mitigating the risk arising from extreme events is a fundamental goal with many applications, such as the modelling of natural disasters, financial crashes, epidemics, and many others. To manage this risk, a vital step is to be able to understand or generate a wide range of extreme scenarios. Existing approaches based on Generative Adversarial Networks (GANs) excel at generating realistic samples, but seek to generate typical samples, rather than extreme samples. Hence, in this work, we propose ExGAN, a GAN-based approach to generate realistic and extreme samples. To model the extremes of the training distribution in a principled way, our work draws from Extreme Value Theory (EVT), a probabilistic approach for modelling the extreme tails of distributions. For practical utility, our framework allows the user to specify both the desired extremeness measure, as well as the desired extremeness probability they wish to sample at. Experiments on real US Precipitation data show that our method generates realistic samples, based on visual inspection and quantitative measures, in an efficient manner. Moreover, generating increasingly extreme examples using ExGAN can be done in constant time (with respect to the extremeness probability $\tau$), as opposed to the $\mathcal{O}(\frac{1}{\tau})$ time required by the baseline approach.
翻译:减轻极端事件引起的风险是一个基本目标,有许多应用,例如自然灾害、金融崩溃、流行病和其他许多应用,例如自然灾害、金融崩溃、流行病等模型。为了管理这一风险,一个关键步骤是能够理解或产生一系列极端情景。基于创用反反转网络的现有方法擅长产生现实的样本,但寻求生成典型的样本而不是极端样本。因此,在这项工作中,我们提议采用基于全球网络的ExGAN方法来生成现实和极端的样本。为了以有原则的方式模拟培训分布的极端,我们的工作取材于极端价值理论(EVT),这是模拟分布极端尾巴的概率方法。为了实用实用性,我们的框架允许用户既指定理想的极端性计量,也指定他们想要采集的极端概率。对真实的美国降水数据进行实验表明,我们的方法可以高效地根据视觉检查和定量计量尺度生成现实的样本。此外,使用ExGAN的极端示例越来越极端,而使用ExGAN$(相对于极端概率=美元)在固定时间(相对于极端概率1美元)的基线上可以生成。