Risk-limiting audits (RLAs), an ingredient in evidence-based elections, are increasingly common. They are a rigorous statistical means of ensuring that electoral results are correct, usually without having to perform an expensive full recount -- at the cost of some controlled probability of error. A recently developed approach for conducting RLAs, SHANGRLA, provides a flexible framework that can encompass a wide variety of social choice functions and audit strategies. Its flexibility comes from reducing sufficient conditions for outcomes to be correct to canonical `assertions' that have a simple mathematical form. Assertions have been developed for auditing various social choice functions including plurality, multi-winner plurality, super-majority, Hamiltonian methods, and instant runoff voting. However, there is no systematic approach to building assertions. Here, we show that assertions with linear dependence on transformations of the votes can easily be transformed to canonical form for SHANGRLA. We illustrate the approach by constructing assertions for party-list elections such as Hamiltonian free list elections and elections using the D'Hondt method, expanding the set of social choice functions to which SHANGRLA applies directly.


翻译:风险限制审计(RLAs)是循证选举的一个要素,越来越常见。它们是一种严格的统计手段,可以确保选举结果正确无误,通常不必进行昂贵的全额计票 -- -- 以某些受控制的误差概率为代价。最近制定的进行RLAs的方法(SHANGRLA)提供了一个灵活的框架,可以包括各种各样的社会选择功能和审计战略。其灵活性来自减少足够条件,使结果能够正确成为具有简单数学形式的卡通性`保证'。它们是一种严格的统计手段,用于审计各种社会选择功能,包括多元性、多赢家多元性、超级多数性、汉密尔顿式方法、以及即时决胜选。然而,没有系统的方法来建立说法。在这里,我们表明,对选票转换的线性依赖可以很容易地转变为SHANGRA的卡式形式。我们用汉密尔顿自由名单选举和使用D'Hont方法为政党名单选举和选举作出主张,扩大社会选择功能的范围。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月21日
Credibility-based Fake News Detection
Arxiv
3+阅读 · 2019年11月2日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员