The paper describes an online deep learning algorithm for the adaptive modulation and coding in 5G Massive MIMO. The algorithm is based on a fully connected neural network, which is initially trained on the output of the traditional algorithm and then is incrementally retrained by the service feedback of its output. We show the advantage of our solution over the state-of-the-art Q-Learning approach. We provide system-level simulation results to support this conclusion in various scenarios with different channel characteristics and different user speeds. Compared with traditional OLLA our algorithm shows 10% to 20% improvement of user throughput in full buffer case.
翻译:本文描述了5G Massive MIMO中适应性调制和编码的在线深层次学习算法。 算法基于一个完全连接的神经网络, 该网络最初接受传统算法输出的培训, 然后通过输出的服务反馈逐渐得到再培训。 我们展示了我们解决方案相对于最先进的Q- 学习方法的优势。 我们提供系统级模拟结果, 以不同频道特点和不同用户速度的不同情景支持这一结论。 与传统的 OLLA 相比, 我们的算法显示, 完全缓冲案例的用户吞吐率提高了10%到20% 。