Partially defined cooperative games are a generalisation of classical cooperative games in which the worth of some of the coalitions is not known. Therefore, they are one of the possible approaches to uncertainty in cooperative game theory. The main focus of this paper is the class of 1-convex cooperative games under this framework. For incomplete cooperative games with minimal information, we present a compact description of the set of 1-convex extensions employing its extreme points and its extreme rays. Then we investigate generalisations of three solution concepts for complete games, namely the $\tau$-value, the Shapley value and the nucleolus. We consider two variants where we compute the centre of gravity of either extreme games or of a combination of extreme games and extreme rays. We show that all of the generalised values coincide for games with minimal information and we call this solution concept the \emph{average value}. Further, we provide three different axiomatisations of the average value and outline a method to generalise several axiomatisations of the $\tau$-value and the Shapley value into an axiomatisation of the average value. We also briefly mention a similar derivation for incomplete games with defined upper vector and indicate several open questions.
翻译:部分定义的合作游戏是典型合作游戏的概略,其中一些联盟的价值并不为人所知。 因此, 它们是合作游戏理论不确定性的可能方法之一。 本文的主要焦点是在此框架下的1- convex 合作游戏类别。 对于不完全的合作游戏, 我们使用极点和极光, 对一组使用极点和极光的1- convex 扩展进行缩略语描述。 然后, 我们研究三种完整的游戏解决方案概念的概略, 即 $- $- 值、 Shaply 值和 nucleolus 。 我们考虑两种变式, 即我们计算极端游戏或极端游戏和极光的组合的重心。 我们显示, 所有通用的值都与最小信息相同, 我们称之为这个解决方案概念 \ emph{ 平均值 。 此外, 我们提供了三种不同的平均值的共度, 并概述了一种概括方法, 即 $\ axion 值和 Shaple 值的简单值, 也显示一个上层的矢量。