Partially defined cooperative games are a generalisation of classical cooperative games in which the worth of some of the coalitions is not known. Therefore, they are one of the possible approaches to uncertainty in cooperative game theory. The main focus of this paper is the class of 1-convex cooperative games under this framework. For incomplete cooperative games with minimal information, we present a compact description of the set of 1-convex extensions employing its extreme points and its extreme rays. Then we investigate generalisations of three solution concepts for complete games, namely the $\tau$-value, the Shapley value and the nucleolus. We consider two variants where we compute the centre of gravity of either extreme games or of a combination of extreme games and extreme rays. We show that all of the generalised values coincide for games with minimal information and we call this solution concept the \emph{average value}. Further, we provide three different axiomatisations of the average value and outline a method to generalise several axiomatisations of the $\tau$-value and the Shapley value into an axiomatisation of the average value. We also briefly mention a similar derivation for incomplete games with defined upper vector and indicate several open questions.


翻译:部分定义的合作游戏是典型合作游戏的概略,其中一些联盟的价值并不为人所知。 因此, 它们是合作游戏理论不确定性的可能方法之一。 本文的主要焦点是在此框架下的1- convex 合作游戏类别。 对于不完全的合作游戏, 我们使用极点和极光, 对一组使用极点和极光的1- convex 扩展进行缩略语描述。 然后, 我们研究三种完整的游戏解决方案概念的概略, 即 $- $- 值、 Shaply 值和 nucleolus 。 我们考虑两种变式, 即我们计算极端游戏或极端游戏和极光的组合的重心。 我们显示, 所有通用的值都与最小信息相同, 我们称之为这个解决方案概念 \ emph{ 平均值 。 此外, 我们提供了三种不同的平均值的共度, 并概述了一种概括方法, 即 $\ axion 值和 Shaple 值的简单值, 也显示一个上层的矢量。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Compositional Generalization in Image Captioning
Arxiv
3+阅读 · 2019年9月16日
Using Scene Graph Context to Improve Image Generation
VIP会员
相关VIP内容
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员