Several recent works in online optimization and game dynamics have established strong negative complexity results including the formal emergence of instability and chaos even in small such settings, e.g., $2\times 2$ games. These results motivate the following question: Which methodological tools can guarantee the regularity of such dynamics and how can we apply them in standard settings of interest such as discrete-time first-order optimization dynamics? We show how proving the existence of invariant functions, i.e., constant of motions, is a fundamental contribution in this direction and establish a plethora of such positive results (e.g. gradient descent, multiplicative weights update, alternating gradient descent and manifold gradient descent) both in optimization as well as in game settings. At a technical level, for some conservation laws we provide an explicit and concise closed form, whereas for other ones we present non-constructive proofs using tools from dynamical systems.
翻译:近期在网上优化和游戏动态方面的一些工作取得了非常消极的复杂结果,包括即使在小型的这种环境下也正式出现了不稳定和混乱,例如2美元2 美元游戏。这些结果促使人们提出以下问题:哪些方法工具可以保证这种动态的规律性,我们如何在标准的利益环境,例如离散的第一阶优化动态中应用这些工具?我们展示了如何证明存在各种功能,即运动的不变性,是朝这个方向作出的基本贡献,并在优化和游戏环境中建立了过多的这种积极结果(例如梯度下降、倍增重量更新、交替梯度下降和多重梯度下降)。在技术层面上,对于某些保护法,我们提供了一种明确而简洁的封闭形式,而对于另一些保护法,我们使用动态系统的工具提出了非建设性的证据。