Anomaly detection systems need to consider a lot of information when scanning for anomalies. One example is the context of the process in which an anomaly might occur, because anomalies for one process might not be anomalies for a different one. Therefore data -- such as system events -- need to be assigned to the program they originate from. This paper investigates whether it is possible to infer from a list of system events the program whose behavior caused the occurrence of these system events. To that end, we model transition probabilities between non-equivalent events and apply the $k$-nearest neighbors algorithm. This system is evaluated on non-malicious, real-world data using four different evaluation scores. Our results suggest that the approach proposed in this paper is capable of correctly inferring program names from system events.
翻译:异常现象检测系统在扫描异常时需要考虑大量信息。 一个例子是异常现象可能发生的过程的背景, 因为一个过程的异常可能不是不同过程的异常。 因此, 数据( 如系统事件) 需要指定给它们从程序产生的程序。 本文调查是否有可能从系统事件清单中推断出其行为导致系统事件发生的程序。 为此, 我们模拟非等值事件之间的过渡概率, 并应用最远的邻居算法 。 这个系统使用四种不同的评分, 对非无害的、 真实世界的数据进行评估 。 我们的结果表明, 本文中建议的方法能够从系统事件中正确推断出程序名称 。