The data science revolution has led to an increased interest in the practice of data analysis. While much has been written about statistical thinking, a complementary form of thinking that appears in the practice of data analysis is design thinking -- the problem-solving process to understand the people for whom a product is being designed. For a given problem, there can be significant or subtle differences in how a data analyst (or producer of a data analysis) constructs, creates, or designs a data analysis, including differences in the choice of methods, tooling, and workflow. These choices can affect the data analysis products themselves and the experience of the consumer of the data analysis. Therefore, the role of a producer can be thought of as designing the data analysis with a set of design principles. Here, we introduce design principles for data analysis and describe how they can be mapped to data analyses in a quantitative, objective and informative manner. We also provide empirical evidence of variation of principles within and between both producers and consumers of data analyses. Our work leads to two insights: it suggests a formal mechanism to describe data analyses based on the design principles for data analysis, and it provides a framework to teach students how to build data analyses using formal design principles.


翻译:数据科学革命使人们对数据分析的做法产生了更大的兴趣。虽然数据分析实践中出现了大量关于统计思维的文字,但数据分析实践中的一种补充思维形式是设计思维 -- -- 了解产品设计对象的解决问题的过程。对于一个特定的问题,数据分析员(或数据分析的制作者)如何构建、创建或设计数据分析,包括方法、工具和工作流程的不同,可能存在重大或微妙的差异。这些选择可能影响数据分析产品本身和数据分析消费者的经验。因此,可以认为生产者的作用是设计带有一套设计原则的数据分析。在这里,我们提出数据分析设计原则,并描述如何用数量、客观和资料方式将这些原则用于数据分析。我们还提供了数据分析的制作者和消费者内部和之间原则差异的经验证据。我们的工作引出了两个见解:它建议一种正式的机制,根据数据分析的设计原则描述数据分析的消费者的经验分析。它提供了一个框架,教学生如何利用正式设计原则进行数据分析。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
17+阅读 · 2019年3月28日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
Arxiv
26+阅读 · 2018年8月19日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
3+阅读 · 2018年4月3日
VIP会员
相关资讯
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员