The data science revolution has led to an increased interest in the practice of data analysis. While much has been written about statistical thinking, a complementary form of thinking that appears in the practice of data analysis is design thinking -- the problem-solving process to understand the people for whom a product is being designed. For a given problem, there can be significant or subtle differences in how a data analyst (or producer of a data analysis) constructs, creates, or designs a data analysis, including differences in the choice of methods, tooling, and workflow. These choices can affect the data analysis products themselves and the experience of the consumer of the data analysis. Therefore, the role of a producer can be thought of as designing the data analysis with a set of design principles. Here, we introduce design principles for data analysis and describe how they can be mapped to data analyses in a quantitative, objective and informative manner. We also provide empirical evidence of variation of principles within and between both producers and consumers of data analyses. Our work leads to two insights: it suggests a formal mechanism to describe data analyses based on the design principles for data analysis, and it provides a framework to teach students how to build data analyses using formal design principles.
翻译:数据科学革命使人们对数据分析的做法产生了更大的兴趣。虽然数据分析实践中出现了大量关于统计思维的文字,但数据分析实践中的一种补充思维形式是设计思维 -- -- 了解产品设计对象的解决问题的过程。对于一个特定的问题,数据分析员(或数据分析的制作者)如何构建、创建或设计数据分析,包括方法、工具和工作流程的不同,可能存在重大或微妙的差异。这些选择可能影响数据分析产品本身和数据分析消费者的经验。因此,可以认为生产者的作用是设计带有一套设计原则的数据分析。在这里,我们提出数据分析设计原则,并描述如何用数量、客观和资料方式将这些原则用于数据分析。我们还提供了数据分析的制作者和消费者内部和之间原则差异的经验证据。我们的工作引出了两个见解:它建议一种正式的机制,根据数据分析的设计原则描述数据分析的消费者的经验分析。它提供了一个框架,教学生如何利用正式设计原则进行数据分析。