Human actions that do not conform to usual behavior are considered as anomalous and such actors are called anomalous entities. Detection of anomalous entities using visual data is a challenging problem in computer vision. This paper presents a new approach to detect anomalous entities in complex situations of examination halls. The proposed method uses a cascade of deep convolutional neural network models. In the first stage, we apply a pretrained model of human pose estimation on frames of videos to extract key feature points of body. Patches extracted from each key point are utilized in the second stage to build a densely connected deep convolutional neural network model for detecting anomalous entities. For experiments we collect a video database of students undertaking examination in a hall. Our results show that the proposed method can detect anomalous entities and warrant unusual behavior with high accuracy.
翻译:与通常行为不相符的人类行为被视为异常行为,此类行为者被称为异常实体;使用视觉数据的异常实体的探测是计算机视觉中一个具有挑战性的问题;本文件介绍了在考试厅复杂情况下发现异常实体的新方法;拟议方法使用一系列深层进化神经网络模型;在第一阶段,我们对视频框架采用预先培训的人类构成估计模型,以提取身体的关键特征点;从每个关键点提取的补丁在第二阶段用于构建一个紧密相连的深层革命神经网络模型,以探测异常实体;在实验中,我们收集了在大厅进行考试的学生的视频数据库;我们的结果显示,拟议方法可以检测异常实体,并需要高度精确地采取异常行为。