ABRIDGED. The analysis of spectral energy distributions (SEDs) of protoplanetary disks to determine their physical properties is known to be highly degenerate. Hence, a Bayesian analysis is required to obtain parameter uncertainties and degeneracies. The challenge here is computational speed, as one radiative transfer model requires a couple of minutes to compute. We performed a Bayesian analysis for 30 well-known protoplanetary disks to determine their physical disk properties, including uncertainties and degeneracies. To circumvent the computational cost problem, we created neural networks (NNs) to emulate the SED generation process. We created two sets of radiative transfer disk models to train and test two NNs that predict SEDs for continuous and discontinuous disks. A Bayesian analysis was then performed on 30 protoplanetary disks with SED data collected by the DIANA project to determine the posterior distributions of all parameters. We ran this analysis twice, (i) with old distances and additional parameter constraints as used in a previous study, to compare results, and (ii) with updated distances and free choice of parameters to obtain homogeneous and unbiased model parameters. We evaluated the uncertainties in the determination of physical disk parameters from SED analysis, and detected and quantified the strongest degeneracies. The NNs are able to predict SEDs within 1ms with uncertainties of about 5% compared to the true SEDs obtained by the radiative transfer code. We find parameter values and uncertainties that are significantly different from previous values obtained by $\chi^2$ fitting. Comparing the global evidence for continuous and discontinuous disks, we find that 26 out of 30 objects are better described by disks that have two distinct radial zones. Also, we created an interactive tool that instantly returns the SED predicted by our NNs for any parameter combination.


翻译:ABRIDGED 。 对原行星磁盘的光谱能量分布分析( SEDs), 其物理特性的物理特性分析已知是高度退化的。 因此, 要获得参数不确定性和变异性, 需要进行巴伊西亚分析。 这里的挑战是计算速度, 因为一个辐射传输模型需要数分钟来计算。 我们为30个广为人知的原行星磁盘进行了巴伊西亚分析, 以确定其物理磁盘特性, 包括不确定性和变异性。 为了绕过计算成本问题, 我们创建了神经网络( NNS) 来效仿SED生成过程。 因此, 我们创建了两套辐射传输磁盘(NNN) 模型, 来培训和测试两个SEDD的变量。 我们用真实的距离和自由选择了S-NED的精确度参数, 并且我们用以前的S-NED的精确值做了更精确和最精确的参数, 我们用以前的S- NED的精确和最精确的参数做了更精确的分析。 我们用以前的S- deal和最精确的S- dedealal 分析, 我们用以前的S- deal 和最精确的S- de d的精确的精确的精确的S- de convial 和最精确和最精确的参数, 通过之前的S- s- de d- s- s- s 的参数做了一个我们所测的模型的模型做了的精确和最精确和最精确和最精确的精确和最精确的精确的精确和最精确和最精确的S- 分析, 我们的S- d- d- d- d- s- s- d- d- d- s- d- d- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s- s-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
64+阅读 · 2021年6月18日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2023年3月30日
Arxiv
64+阅读 · 2021年6月18日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员