Given the matrix equation ${\bf A X} + {\bf X B} + f({\bf X }) {\bf C} ={\bf D}$ in the unknown $n\times m$ matrix ${\bf X }$, we analyze existence and uniqueness conditions, together with computational solution strategies for $f \,: \mathbb{R}^{n \times m} \to \mathbb{R}$ being a linear or nonlinear function. We characterize different properties of the matrix equation and of its solution, depending on the considered classes of functions $f$. Our analysis mainly concerns small dimensional problems, though several considerations also apply to large scale matrix equations.
翻译:鉴于矩阵方程式${bf AX} + {bf X B} + f(bf X }) {bf C} {bf D} + f(bf C} ) {bf D} $ 以未知的 美元计,我们分析了存在和独特性条件,同时分析了$的计算解决方案策略 :\ mathbb{R} + bf x B} + f(bf X } + b(bbf X } ) + bf (bf C} ) {bf C} {bf D} $ 以未知的 美元计,我们根据考虑的功能类别,对矩阵方程式及其解决方案的不同属性进行了定性。我们的分析主要涉及小维问题,尽管许多考虑因素也适用于大型矩阵方程式。