This paper considers the quickest search problem to identify anomalies among large numbers of data streams. These streams can model, for example, disjoint regions monitored by a mobile robot. A particular challenge is a version of the problem in which the experimenter must suffer a cost each time the data stream being sampled changes, such as the time the robot must spend moving between regions. In this paper, we propose an algorithm which accounts for switching costs by varying a confidence threshold that governs when the algorithm switches to a new data stream. Our main contributions are easily computable approximations for both the optimal value of this threshold and the optimal value of the parameter that determines when a stream must be re-sampled. Further, we empirically show (i) a uniform improvement for switching costs of interest and (ii) roughly equivalent performance for small switching costs when comparing to the closest available algorithm.
翻译:本文考虑在大量数据流中识别异常数据的快速搜索问题。这些数据流可以模拟由移动机器人监视的不相交区域。一个特别的挑战是在实验者必须承担每次采样变化的代价(例如指机器人必须移动到不同区域所需的时间)的版本中的问题。本文提出了一种算法,该算法考虑到切换代价,通过改变决定何时切换到新数据流的置信度阈值来实现。我们的主要贡献是易于计算的近似值,既可以用于确定此阈值的最优值,也可以用于确定什么时候必须重新对数据流进行采样的参数的最优值。此外,我们通过实证表明,当考虑到有趣的切换成本时,我们的算法都有通常的性能提升,而在比较最接近的现有算法的性能上也具有近似的表现。