Deep convolutional neural networks (CNNs) have been widely used for medical image segmentation. In most studies, only the output layer is exploited to compute the final segmentation results and the hidden representations of the deep learned features have not been well understood. In this paper, we propose a prototype segmentation (ProtoSeg) method to compute a binary segmentation map based on deep features. We measure the segmentation abilities of the features by computing the Dice between the feature segmentation map and ground-truth, named as the segmentation ability score (SA score for short). The corresponding SA score can quantify the segmentation abilities of deep features in different layers and units to understand the deep neural networks for segmentation. In addition, our method can provide a mean SA score which can give a performance estimation of the output on the test images without ground-truth. Finally, we use the proposed ProtoSeg method to compute the segmentation map directly on input images to further understand the segmentation ability of each input image. Results are presented on segmenting tumors in brain MRI, lesions in skin images, COVID-related abnormality in CT images, prostate segmentation in abdominal MRI, and pancreatic mass segmentation in CT images. Our method can provide new insights for interpreting and explainable AI systems for medical image segmentation. Our code is available on: \url{https://github.com/shengfly/ProtoSeg}.
翻译:深相神经网络(CNNs)已被广泛用于医学图像分割。 在大多数研究中,只有输出层被利用来计算最终分解结果,而深知性特征的隐蔽表达面还没有得到很好理解。 在本文中,我们提议了一种原型分解(ProtoSeg)方法,以根据深处特征计算二元分解图(ProtoSeg) 。我们通过计算特征分解图和地面真理之间的分解能力来测量特征的分解能力,称为分解能力分数(SA分数短分数)。相应的SA分数可以量化不同层和单位的深层分解功能的分解能力,以了解深层神经网络的分解能力。此外,我们的方法可以提供一种平均的SA分数(ProtoSeg) 。 最后,我们使用拟议的ProtoSeget方法,直接在输入图像上进行分解分解图,以进一步理解每个输入图像的分解分解能力(SA分数短分数)。 相应的SA评分数可以量化脑、皮肤图像中的分解、皮肤图像中的分解、CROD- 以及我们图像的分解方法可以提供新的分解。