In many applications, heterogeneous treatment effects on a censored response variable are of primary interest, and it is natural to evaluate the effects at different quantiles (e.g., median). The large number of potential effect modifiers, the unknown structure of the treatment effects, and the presence of right censoring pose significant challenges. In this paper, we develop a hybrid forest approach called Hybrid Censored Quantile Regression Forest (HCQRF) to assess the heterogeneous effects varying with high-dimensional variables. The hybrid estimation approach takes advantage of the random forests and the censored quantile regression. We propose a doubly-weighted estimation procedure that consists of a redistribution-of-mass weight to handle censoring and an adaptive nearest neighbor weight derived from the forest to handle high-dimensional effect functions. We propose a variable importance decomposition to measure the impact of a variable on the treatment effect function. Extensive simulation studies demonstrate the efficacy and stability of HCQRF. The result of the simulation study also convinces us of the effectiveness of the variable importance decomposition. We apply HCQRF to a clinical trial of colorectal cancer. We achieve insightful estimations of the treatment effect and meaningful variable importance results. The result of the variable importance also confirms the necessity of the decomposition.
翻译:在许多应用中,对受审查反应变量的不同处理影响是首要利益所在,而且评估不同量(例如中位数)的影响自然是评估不同量(例如中位数)的影响。 大量潜在效果改变者、处理效果的未知结构和右审查的存在构成了重大挑战。 在本文件中,我们制定了一种混合森林方法,称为混合敏感量递减森林(HCQRF),以评估与高维变量不同的各种影响。混合估计方法利用随机森林和受审查量回归的优势。我们建议采用双重加权估计程序,其中包括对质的重量进行再分配,从森林中提取的检查和适应性近邻重量,以便处理高维度效应功能。我们提出了衡量变量对治疗效果功能的影响的可变重要性的可变分解作用。广泛的模拟研究表明了丙位变量的功效和稳定性。模拟研究的结果还使我们确信了可变重要性。我们用HCQRF对彩色癌的临床重要性进行临床试验。我们还确认了可变性癌症影响分析结果的重要性。