Segmentation of structural parts of 3D models of plants is an important step for plant phenotyping, especially for monitoring architectural and morphological traits. Current state-of-the art approaches rely on hand-crafted 3D local features for modeling geometric variations in plant structures. While recent advancements in deep learning on point clouds have the potential of extracting relevant local and global characteristics, the scarcity of labeled 3D plant data impedes the exploration of this potential. We adapted six recent point-based deep learning architectures (PointNet, PointNet++, DGCNN, PointCNN, ShellNet, RIConv) for segmentation of structural parts of rosebush models. We generated 3D synthetic rosebush models to provide adequate amount of labeled data for modification and pre-training of these architectures. To evaluate their performance on real rosebush plants, we used the ROSE-X data set of fully annotated point cloud models. We provided experiments with and without the incorporation of synthetic data to demonstrate the potential of point-based deep learning techniques even with limited labeled data of real plants. The experimental results show that PointNet++ produces the highest segmentation accuracy among the six point-based deep learning methods. The advantage of PointNet++ is that it provides a flexibility in the scales of the hierarchical organization of the point cloud data. Pre-training with synthetic 3D models boosted the performance of all architectures, except for PointNet.
翻译:3D植物模型结构部分的分解是植物外观的重要一步,特别是在监测建筑和形态特征方面。目前最先进的方法依靠手工制作的3D本地特征来模拟植物结构的几何变形。虽然点云的深层学习最近的进展有可能提取出相关的当地和全球特点,但贴标签的3D植物数据缺乏阻碍了这一潜力的探索。我们为分解玫瑰布什模型的结构部分而调整了6个最近基于点的深层次学习结构(PointNet、PointNet++、DGCNN、PointCNN、ShellNet、RIConv)。我们制作了3D合成玫瑰布什模型,为这些结构的修改和预培训提供足够的标签数据。我们使用贴有标签的3D工厂数据集数据集组的数据集。我们提供了实验,但没有纳入合成数据,以展示基于点的深深层深层学习技术的潜力,即使实际植物的标签数据也有限。实验结果显示,D的顶点的推进度结构结构结构(Centrental-chnical Strual Strual Strualation)提供了最高分级结构。