The present world is badly affected by novel coronavirus (COVID-19). Using medical kits to identify the coronavirus affected persons are very slow. What happens in the next, nobody knows. The world is facing erratic problem and do not know what will happen in near future. This paper is trying to make prognosis of the coronavirus recovery cases using LSTM (Long Short Term Memory). This work exploited data of 258 regions, their latitude and longitude and the number of death of 403 days ranging from 22-01-2020 to 27-02-2021. Specifically, advanced deep learning-based algorithms known as the LSTM, play a great effect on extracting highly essential features for time series data (TSD) analysis.There are lots of methods which already use to analyze propagation prediction. The main task of this paper culminates in analyzing the spreading of Coronavirus across worldwide recovery cases using LSTM deep learning-based architectures.
翻译:目前的世界受到新颖的冠状病毒(COVID-19)的严重影响。使用医疗包来识别受冠状病毒影响的人是非常缓慢的。接下来会发生什么,没有人知道。世界正面临着不稳定的问题,并且不知道在不久的将来会发生什么。本文试图用LSTM(长时记忆)对冠状病毒恢复案例作出预测。这项工作利用了258个区域的数据,它们的纬度和经度,以及403天的死亡人数,从22-01-2020到27-02-2021不等。具体地说,先进的深层次学习算法,称为LSTM,在为时间序列数据分析提取非常重要的特征方面产生了巨大影响。有很多方法已经用于分析传播预测。本文的主要任务就是利用LSTM深层学习结构分析科罗纳病毒在全世界复原案例的传播情况。