Privacy scoring aims at measuring the privacy violation risk of a user over an online social network (OSN). Existing work in the field rely on possibly biased or emotional survey data and focus only on personel purpose OSNs like Facebook. In contrast to existing work, in this thesis, we work with real-world OSN data collected from LinkedIn, the most popular professional-purpose OSN (ProOSN). Towards this end, we developed an extensive crawler to collect all relevant profile data of 5,389 LinkedIn users, modelled these data using both relational and graph databases and quantitatively analyzed all privacy risk scoring methods in the literature. Additionally, we propose a novel scoring method that consider the granularity of data an OSN user shares on her profile page. Extensive experimental evaluation of existing and proposed scoring methods indicates the effectiveness of the proposed solution.


翻译:隐私评分旨在衡量用户在网上社交网络上侵犯隐私的风险。实地的现有工作依靠可能带有偏见或情感色彩的调查数据,只关注Facebook等个人目的的OSN。与目前的工作相比,在本论文中,我们使用从最受欢迎的专业目的OSN(ProOSN)LinkedIn(LinkedIn)收集的真实世界的OSN数据。为此,我们开发了一个广泛的爬行器,收集5 389 LinkedIn用户的所有相关概况数据,利用关系和图表数据库对这些数据进行模拟,并对文献中的所有隐私风险评分方法进行定量分析。此外,我们提出了一个新的评分方法,其中考虑到数据颗粒性,即OSN用户在她简介页上的份额。对现有和拟议的评分方法进行广泛的实验性评估表明拟议解决方案的有效性。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
[SIGIR2021]可复现推荐系统评估的全面和严谨的框架
专知会员服务
21+阅读 · 2021年4月30日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关VIP内容
[SIGIR2021]可复现推荐系统评估的全面和严谨的框架
专知会员服务
21+阅读 · 2021年4月30日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员