Low-rank tensor compression has been proposed as a promising approach to reduce the memory and compute requirements of neural networks for their deployment on edge devices. Tensor compression reduces the number of parameters required to represent a neural network weight by assuming network weights possess a coarse higher-order structure. This coarse structure assumption has been applied to compress large neural networks such as VGG and ResNet. However modern state-of-the-art neural networks for computer vision tasks (i.e. MobileNet, EfficientNet) already assume a coarse factorized structure through depthwise separable convolutions, making pure tensor decomposition a less attractive approach. We propose to combine low-rank tensor decomposition with sparse pruning in order to take advantage of both coarse and fine structure for compression. We compress weights in SOTA architectures (MobileNetv3, EfficientNet, Vision Transformer) and compare this approach to sparse pruning and tensor decomposition alone.
翻译:低压强压缩是减少神经网络在边缘装置上部署的记忆和计算要求的一个很有希望的方法。 电锯压缩通过假设网络重量具有粗糙的较高顺序结构,减少了代表神经网络重量所需的参数数量。 这一粗糙的结构假设已应用于压缩大型神经网络,如VGG和ResNet。 然而,现代先进的计算机视觉任务(即移动网络、高效网络)的先进神经网络已经通过深度可分离的共变结构而承担了粗化的因子化结构,使纯的索诺分解法变得不那么吸引人。 我们提议将低级的高温分解与稀薄的螺旋分解法结合起来,以便利用粗糙和细细细的压缩结构。 我们在SOTA结构(MobileNet3、高效网络、愿景变换器)中压缩重量,并将这一方法与稀疏的螺旋和冷冻分解法作比较。