Despite recent advances in implicit neural representations (INRs), it remains challenging for a coordinate-based multi-layer perceptron (MLP) of INRs to learn a common representation across data instances and generalize it for unseen instances. In this work, we introduce a simple yet effective framework for generalizable INRs that enables a coordinate-based MLP to represent complex data instances by modulating only a small set of weights in an early MLP layer as an instance pattern composer; the remaining MLP weights learn pattern composition rules for common representations across instances. Our generalizable INR framework is fully compatible with existing meta-learning and hypernetworks in learning to predict the modulated weight for unseen instances. Extensive experiments demonstrate that our method achieves high performance on a wide range of domains such as an audio, image, and 3D object, while the ablation study validates our weight modulation.
翻译:尽管最近隐含神经表征(INRs)有所进展,但对于以协调为基础的INR的多层次多立方体(MLP)来说,在数据实例中学习一种共同的表示方式,并将其概括为不可见的实例,仍然具有挑战性。在这项工作中,我们为可通用的IRS引入了一个简单而有效的框架,使以协调为基础的MLP能够代表复杂的数据实例,在早期MLP层中只调节一小组重力作为实例模式撰写器;其余的MLP重量学习了不同实例的共同表述模式构成规则。我们普遍适用的IRR框架与现有的元学习和超网络完全兼容,以学习如何预测为不可见实例调整的重量。广泛的实验表明,我们的方法在音频、图像和3D天体等广泛领域取得了很高的绩效,而减缩研究则验证了我们的权重调节。