Rejecting cosmic rays (CRs) is essential for the scientific interpretation of CCD-captured data, but detecting CRs in single-exposure images has remained challenging. Conventional CR detectors require experimental parameter tuning for different instruments, and recent deep learning methods only produce instrument-specific models that suffer from performance loss on telescopes not included in the training data. In this work, we present Cosmic-CoNN, a generic CR detector deployed for 24 telescopes at the Las Cumbres Observatory (LCO). We first leverage thousands of images from LCO's global telescope network to build a large, diverse ground-based CR dataset for rich coverage of instruments and CR features. We then optimize a neural network and propose a novel Median-Weighted loss function for CR detection to train a generic model that achieves a 99.91% true-positive detection rate on LCO imaging data and maintains over 96.40% on unseen data from Gemini GMOS-N/S, with a false-positive rate of 0.01%. We also build a suite of tools including an interactive CR mask visualization and editing interface, console commands, and Python APIs to make automatic, robust CR detection widely accessible by the community of astronomers. Our dataset, open-source codebase, and trained models are available at https://github.com/cy-xu/cosmic-conn.
翻译:拒绝宇宙射线(CRS)对于对CCD采集的数据进行科学解释至关重要,但是在单一接触图像中检测CR仍然具有挑战性。常规CR探测器要求对不同仪器进行实验参数调整,而最近深层次的学习方法只产生在培训数据中未包含的望远镜上出现性能损失的仪器特有模型。在这项工作中,我们介绍了在Las Cumbres观测站(LCO)为24个望远镜部署的通用CR探测器CS探测器Cosmic-CONN(Commic-CONN)。我们首先利用LCO全球望远镜网络的数千个图像,为仪器和CR功能的丰富覆盖建立一个大型、多样的地面CR数据集。我们随后优化了一个神经网络,并提出了一个全新的Median-Weighted损失功能,供CRCR检测使用,以在LCO成像数据上达到99.91%的真实检测率,并在GMOS-N/S上维持超过96.40%的隐蔽数据,其误反应率为0.01%。我们还建立了一个工具套套工具,包括交互式CM面具和编辑界面界面、控制控制控制控制室命令,在可访问的自动数据库中可以广泛使用的数据。